Spheroidal Functions of the Second Kind
نویسندگان
چکیده
منابع مشابه
Resonance of fractional transfer functions of the second kind
where (ai, bj) ∈ R, ν is the commensurable differentiation order,mB and mA are respectively numerator and denominator degrees, with mA > mB for strictly causal systems. Stability of fractional differentiation systems is addressed in the following theorem. Theorem 1.1. (Stability Matignon (1998)). A commensurable transfer function with a commensurable order ν, as in (4), with T and R two coprime...
متن کاملBessel Functions of the First and Second Kind
Outline Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملAccurate Calculation of Prolate Spheroidal Radial Functions of the First Kind and Their First Derivatives
Alternative expressions for calculating the prolate spheroidal radial functions of the first kind R^] (c, £) and their first derivatives with respect to £ are shown to provide accurate values, even for low values of I — m where the traditional expressions provide increasingly inaccurate results as the size parameter c increases to large values. These expressions also converge in fewer terms tha...
متن کاملOrthogonal rational functions, associated rational functions and functions of the second kind
Consider the sequence of polesA = {α1, α2, . . .}, and suppose the rational functions φj with poles in A form an orthonormal system with respect to a Hermitian positive-definite inner product. Further, assume the φj satisfy a three-term recurrence relation. Let the rational function φ j\1 with poles in {α2, α3, . . .} represent the associated rational function of φj of order 1; i.e. the φ (1) j...
متن کاملNumerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method
In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1935
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.21.6.316